As the main carrier of groundwater in nature, water transport behavior in fracture networks and identification of its main control factors are challenging problems in hydrogeology. Laboratory experiments are designed in this paper using fracture networks made of Perspex plate for a series of hydraulic tests. Using the conditions of different types of connections for inlet and outlet, temperature tracing tests are conducted for determining dominant flow paths. The flow resistances are calculated at different points, and the control factors of the dominant flow paths are then discussed. Three major conclusions are obtained: (1) the existence of the dominant flow phenomenon in fracture networks is verified; (2) the dominant flow paths can be ascertained by monitoring the temperature variation of hot water in complex fracture networks; (3) the flow resistance is the most fundamental reason for forming dominant flow: the channel with less resistance is selected as the dominant path.
Published in | Hydrology (Volume 7, Issue 2) |
DOI | 10.11648/j.hyd.20190702.12 |
Page(s) | 32-37 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Dominant Flow Paths, Temperature Tracer, Flow Resistance, Fracture Networks
[1] | Cherubini C., Giasi C. I., and Pastore N. Bench scale laboratory tests to analyze non-linear flow in fractured media [J]. Hydrology and Earth System Sciences, 2012, 16 (8): 2511-2522. |
[2] | Zhang Z., Nemcik J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures [J]. Journal of Hydrology, 2013, 477: 139-151. |
[3] | Quinn P. M., Cherry J. A., and Parker B. L. Quantification of non-Darcian flow Observed during packer testing in fractured sedimentary rock [J]. Water Resources Research, 2011, 47 (9): W09533. |
[4] | Chen X. B., Zhao J., and Chen L. Experimental and Numerical Investigation of Preferential Flow in Fractured Network with Clogging Process [J]. Mathematical Problems in Engineering, 2014, 2014 (3): 1-13. |
[5] | Berkowitz B. Characterizing flow and transport in fractured geological media: A review [J]. Advances in Water Resources, 2002, 25 (8): 861-884. |
[6] | Salve R. Observations of preferential flow during a liquid release experiment in fractured welded tuffs [J]. Water Resources Research, 2005, 41 (9): 477-487. |
[7] | Figueiredo B., Tsang C. F., Niemi A., et al. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations [J]. Hydrogeology Journal, 2016, 24 (7): 1-16. |
[8] | Tian K. M. Bias flow and vein fracture water runoff [J]. Geological Review, 1983, 29 (5): 408-417. |
[9] | Yang H. H., Wang Y., Gao W., Niu Y. L. Effect of wide-gap ratio and roughness on high-speed non-Darcy bias flow effect of cross-fracture [J]. Science Technology and Engineering, 2018, 18 (7): 44-49. |
[10] | Rau G. C., Andersen M. S., Mccallum A. M., et al. Analytical methods that use natural heat as a tracer to quantify surface water-groundwater exchange, evaluated using field temperature records [J]. Hydrogeology Journal, 2010, 18 (5): 1093-1110. |
[11] | Becker M. W. Potential for Satellite Remote Sensing of Ground Water [J]. Groundwater, 2006, 44 (2): 306–318. |
[12] | Silliman S., Robinson R. Identifying fracture interconnections between boreholes using natural temperature profiling: I. Conceptual Basis [J]. Groundwater, 1989, 27 (3): 393–402. |
[13] | Klepikova M. V., Borgne T. L., Bour O., et al. Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media [J]. Journal of Hydrology, 2014, 512 (9): 549-562. |
[14] | Cherubini C., Pastore N., Giasi C. I., et al. Laboratory experimental investigation of heat transport in fractured media [J]. Nonlinear Processes in Geophysics, 2017, 24 (1): 1-37. |
[15] | Tian K. M.. The hydraulic properties of crossing-flow in an intersected fracture [J]. Acta Geological Sinica, 1986 (2): 90-102. |
[16] | Gong J., Rossen W. R. Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow [J]. Petroleum Science, 2017, 14 (1): 138-154. |
[17] | Chuang P. Y., Chia Y., Chiu Y. C., et al. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test [J]. Hydrogeology Journal, 2017, 26 (1): 321-331. |
[18] | Somogyvári M., Jalali M., Jimenez P. S., et al. Synthetic fracture networks characterization with transdimensional inversion [J]. Water Resources Research, 2017, 53 (6): 5104-5123. |
APA Style
Mu Wang, Fengjun Gao, Jiazhong Qian. (2019). Experimental Study of the Dominant Flow Paths and Analysis of the Influence Factors Through Fracture Networks. Hydrology, 7(2), 32-37. https://doi.org/10.11648/j.hyd.20190702.12
ACS Style
Mu Wang; Fengjun Gao; Jiazhong Qian. Experimental Study of the Dominant Flow Paths and Analysis of the Influence Factors Through Fracture Networks. Hydrology. 2019, 7(2), 32-37. doi: 10.11648/j.hyd.20190702.12
AMA Style
Mu Wang, Fengjun Gao, Jiazhong Qian. Experimental Study of the Dominant Flow Paths and Analysis of the Influence Factors Through Fracture Networks. Hydrology. 2019;7(2):32-37. doi: 10.11648/j.hyd.20190702.12
@article{10.11648/j.hyd.20190702.12, author = {Mu Wang and Fengjun Gao and Jiazhong Qian}, title = {Experimental Study of the Dominant Flow Paths and Analysis of the Influence Factors Through Fracture Networks}, journal = {Hydrology}, volume = {7}, number = {2}, pages = {32-37}, doi = {10.11648/j.hyd.20190702.12}, url = {https://doi.org/10.11648/j.hyd.20190702.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.hyd.20190702.12}, abstract = {As the main carrier of groundwater in nature, water transport behavior in fracture networks and identification of its main control factors are challenging problems in hydrogeology. Laboratory experiments are designed in this paper using fracture networks made of Perspex plate for a series of hydraulic tests. Using the conditions of different types of connections for inlet and outlet, temperature tracing tests are conducted for determining dominant flow paths. The flow resistances are calculated at different points, and the control factors of the dominant flow paths are then discussed. Three major conclusions are obtained: (1) the existence of the dominant flow phenomenon in fracture networks is verified; (2) the dominant flow paths can be ascertained by monitoring the temperature variation of hot water in complex fracture networks; (3) the flow resistance is the most fundamental reason for forming dominant flow: the channel with less resistance is selected as the dominant path.}, year = {2019} }
TY - JOUR T1 - Experimental Study of the Dominant Flow Paths and Analysis of the Influence Factors Through Fracture Networks AU - Mu Wang AU - Fengjun Gao AU - Jiazhong Qian Y1 - 2019/08/26 PY - 2019 N1 - https://doi.org/10.11648/j.hyd.20190702.12 DO - 10.11648/j.hyd.20190702.12 T2 - Hydrology JF - Hydrology JO - Hydrology SP - 32 EP - 37 PB - Science Publishing Group SN - 2330-7617 UR - https://doi.org/10.11648/j.hyd.20190702.12 AB - As the main carrier of groundwater in nature, water transport behavior in fracture networks and identification of its main control factors are challenging problems in hydrogeology. Laboratory experiments are designed in this paper using fracture networks made of Perspex plate for a series of hydraulic tests. Using the conditions of different types of connections for inlet and outlet, temperature tracing tests are conducted for determining dominant flow paths. The flow resistances are calculated at different points, and the control factors of the dominant flow paths are then discussed. Three major conclusions are obtained: (1) the existence of the dominant flow phenomenon in fracture networks is verified; (2) the dominant flow paths can be ascertained by monitoring the temperature variation of hot water in complex fracture networks; (3) the flow resistance is the most fundamental reason for forming dominant flow: the channel with less resistance is selected as the dominant path. VL - 7 IS - 2 ER -