| Peer-Reviewed

Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation

Published in Hydrology (Volume 6, Issue 2)
Received: 23 July 2018     Accepted: 10 August 2018     Published: 5 September 2018
Views:       Downloads:
Abstract

In a soudano-guinean climate context, the Ouémé River Basin is simulated using the semi-distributed hydrological model SWAT to understand the rainfall-runoff process on this basin and also to assess this model performance on West Africa large areas basins at daily and monthly time steps. The inputs data consist of climatic data and rain gauge discharge records. The inputs records are long-term times series for the period 1979-2010, while the considered land use is just for the year 2003. After calibration and validation of the model, spatial calibration is also performed to appreciate this other feature of the model. It gives such acceptable and disputable results. Six (06) hypotheses have been emitted to analyze this performance loss. It comes out that hypothesis H5 results perform better both in calibration and validation. This hypothesis used data for the period 1993-2010 with 1993-2004 for calibration and 2005-2010 for validation; and considered the missing data in discharge records without any completion. Considering the internal rain gauge outlet performance for this hypothesis, the best is retained and the corresponded project is realized for each individual subbasin to see how best the model could simulate discharge for the Bétérou, Kaboua and Atchérigbé individual subbasins. Hypothesis H1; an assumption which considers missing discharge with data time period of 1982-2010 with 1982-1996 for calibration and 1997-2010 for validation; is the best for Bétérou and Kaboua, whereas H5 is better for Atchérigbé subbasin. Uncertainty analysis and Global Sensitivity Analysis were performed to appreciate what are this process occurring in the basin and how these results could be validated. A last comparison effort is performed with 10km rainfall grid for climatic rainfall data at the global catchment outlet; this approach does not improve results, while at internal outlet some improvements are observed.

Published in Hydrology (Volume 6, Issue 2)
DOI 10.11648/j.hyd.20180602.13
Page(s) 61-77
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

SWAT, Ouémé RIVER, Hypothesis, Uncertainty, Sensitivity, Analysis

References
[1] MAZET P., Aménagement du territoire,. A. Colin, Paris,, 2000. 181 p.
[2] Carry G. and Veyret Y., La prévention du risque d’inondation: l’exemple français est-il transposable aux pays en développement In Cahier des Sciences humaines, n° 32,, 1996: p. pp. 423-443.
[3] Houndénou C., Variabilité climatique et maïsiculture en milieu tropical humide. L’exemple du Bénin, diagnostic et modélisation.. Thèse de Doctorat de Géographie de l’Université de Bourgogne, Dijon,, 1999. 390 p.
[4] Gbaguidi, F., Forêts sacrées et conservation de la biodiversité dans le département de l’Ouémé au Sud-est du Bénin. Université nationale du Bénin Abomey-Calavi, Faculté des Sciences Agronomiques, Département Aménagement et gestion de l’environnement. Superviseur: Dr. N. Sokpon, Bénin, 164p, 1998.
[5] Guha-Sapir, D., F. Vos, R. Below, and S. Ponserre, Annual disaster statistical review 2011: the numbers and trends. 2012, Centre for Research on the Epidemiology of Disasters (CRED).
[6] Yang, H., X. Zhang, and A. J. Zehnder, Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agricultural Water Management, 2003. 61(2): p. 143-161.
[7] Field, C. B., Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. 2012: Cambridge University Press.
[8] Le Lay M., Modélisation hydrologique dans un contexte de variabilité hydroclimatique. Une approche comparative pour l’étude du cycle hydrologique à méso-échelle au Bénin. 2006, LHTE/UJF/INPG: Grenoble(France). p. 251p.
[9] Linsoussi A. C., Evaluation des risques en matière de gestion des ressources: contribution à la caractérisation événementielle des régimes Ouest-Africain et de leurs fluctuations., in Dissertation,. 2000, University of Abomey-Calavi: Cotonou.
[10] Vissin W. E., Contribution à l‟étude du fonctionnement hydrologique du bassin de la Sota., in Dissertation. 1998, University of Abomey-Calavi Cotonou.
[11] Bormann, H. and B. Diekkrüger, Possibilities and limitations of regional hydrological models applied within an environmental change study in Benin (West Africa). Physics and Chemistry of the Earth, Parts A/B/C, 2003. 28(33): p. 1323-1332.
[12] Kapangaziwiri, E., D. Hughes, and T. Wagener, Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa. Hydrological Sciences Journal, 2012. 57(5): p. 1000-1019.
[13] Mazvimavi, D., A. Meijerink, H. Savenije, and A. Stein, Prediction of flow characteristics using multiple regression and neural networks: a case study in Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 2005. 30(11): p. 639-647.
[14] Minihane, M., Estimating mean monthly streamflow in the Lugenda River, Northern Mozambique. Putting Prediction in Ungauged Basins into Practice; Canadian Water Resources Association: Ottawa, ON, Canada, 2013: p. 185-196.
[15] Ndomba, P., F. Mtalo, and A. Killingtveit, SWAT model application in a data scarce tropical complex catchment in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 2008. 33(8): p. 626-632.
[16] Barros, V., C. Field, D. Dokke, M. Mastrandrea, K. Mach, T. E. Bilir, M. Chatterjee, K. Ebi, Y. Estrada, and R. Genova, Climate change 2014: impacts, adaptation, and vulnerability-Part B: regional aspects-Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014.
[17] Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, Large area hydrologic modeling and assessment part I: model development. JAWRA Journal of the American Water Resources Association, 1998. 34(1): p. 73-89.
[18] Arnold, J. G., D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. Harmel, A. Van Griensven, and M. W. Van Liew, SWAT: Model use, calibration, and validation. Transactions of the ASABE, 2012. 55(4): p. 1491-1508.
[19] Gassman, P. W., M. R. Reyes, C. H. Green, and J. G. Arnold, The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 2007. 50(4): p. 1211-1250.
[20] Williams, J., J. Arnold, J. Kiniry, P. Gassman, and C. Green, History of model development at Temple, Texas. Hydrological Sciences Journal, 2008. 53(5): p. 948-960.
[21] Arnold, J. G., R. Srinivasan, R. S. Muttiah, and P. M. Allen, Continental scale simulation of the hydrologic balance. JAWRA Journal of the American Water Resources Association, 1999. 35(5): p. 1037-1051.
[22] Srinivasan, R., T. S. Ramanarayanan, J. G. Arnold, and S. T. Bednarz, Large area hydrologic modeling and assessment part II: model application. JAWRA Journal of the American Water Resources Association, 1998. 34(1): p. 91-101.
[23] Gosain, A., S. Rao, and D. Basuray, Climate change impact assessment on hydrology of Indian river basins. Current science, 2006: p. 346-353.
[24] Schuol, J., K. C. Abbaspour, R. Srinivasan, and H. Yang, Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology, 2008. 352(1): p. 30-49.
[25] Faramarzi, M., K. C. Abbaspour, R. Schulin, and H. Yang, Modelling blue and green water resources availability in Iran. Hydrological Processes, 2009. 23(3): p. 486-501.
[26] Faramarzi, M., K. C. Abbaspour, S. A. Vaghefi, M. R. Farzaneh, A. J. Zehnder, R. Srinivasan, and H. Yang, Modeling impacts of climate change on freshwater availability in Africa. Journal of Hydrology, 2013. 480: p. 85-101.
[27] Schuol, J. and K. Abbaspour, Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in geosciences, 2006. 9: p. 137-143.
[28] Angelina, A., A. Gado Djibo, O. Seidou, I. Seidou Sanda, and K. Sittichok, Changes to flow regime on the Niger River at Koulikoro under a changing climate. Hydrological Sciences Journal, 2015. 60(10): p. 1709-1723.
[29] Schuol, J. and K. Abbaspour, Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecological modelling, 2007. 201(3): p. 301-311.
[30] Schuol, J., K. C. Abbaspour, H. Yang, R. Srinivasan, and A. J. Zehnder, Modeling blue and green water availability in Africa. Water Resources Research, 2008. 44(7).
[31] Awotwi, A., F. Yeboah, and M. Kumi, Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal, 2015. 29(2): p. 259-267.
[32] Guzinski, R., S. Kass, S. Huber, P. Bauer-Gottwein, I. H. Jensen, V. Naeimi, M. Doubkova, A. Walli, and C. Tottrup, Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sensing, 2014. 6(8): p. 7819-7839.
[33] Sood, A., L. Muthuwatta, and M. McCartney, A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water international, 2013. 38(3): p. 297-311.
[34] Bossa, A., B. Diekkrüger, S. Giertz, G. Steup, L. Sintondji, E. Agbossou, and C. Hiepe, Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management, 2012. 115: p. 20-37.
[35] Bossa, A., B. Diekkrüger, A. Igué, and T. Gaiser, Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma, 2012. 173: p. 61-74.
[36] Sintondji O. L., Zokpodo B., Ahouansou M. D., Vissin W. E., and Agbossou K. E., Modelling the water balance of ouémé catchment at the savè outlet in Benin: Contribution to the sustainable water resource management. International Journal of AgriScience, 2014. 4(1): p. 74-88.
[37] Lawal, O., T. Gaiser, and K. Stahr, Effect of land use changes on sediment load in the Zagbo River Catchment in Southern Benin. Deutscher Tropentag proceeding, 2004.
[38] Sintondji, L. O. C., Modelling the Rainfall Runoff Process in the Upper Ouémé Catchment (Terou in Bénin Republic) in a Context of Global Change: Extrapolation from the Local to the Regional Scale. 2005: Shaker.
[39] Busche, H., C. Hiepe, and B. Diekkrüger. Modelling the effects of land use and climate change on hydrology and soil erosion in a sub-humid African Catchment. in Proceedings of the 3rd International SWAT Conference. 2005.
[40] Bossa Y. A., Modélisation du bilan hydrologique dans le bassin du Zou à l'exutoire d'Atchérigbé: contribution à l'utilisation durable des ressources en eau. 2007.
[41] Sintondji L. O., Awoye H. R., and Agbossou K. E., Modélisation du bilan hydrologique du bassin versant du Zou au Centre-Bénin: Contribution à la gestion durable des ressources en eau.. Bulletin de la Recherche Agronomique du Bénin 2008. Numéro 59(Mars 2008): p. 35 - 48.
[42] Ahouansou, M., Modélisation du fonctionnement hydrologique dans le bassin versant de l’Ouémé à Savè: Contribution à la Gestion Intégrée des Ressources en Eau. 2008, Université d'Abomey-Calavi: Cotonou. p. 113p.
[43] Hiepe, C., Soil degradation by water erosion in a sub-humid West-African catchment, a modelling approach considering land use and climate change in Benin. University of Bonn, Bonn, 2008.
[44] Speth, P., M. Christoph, and B. Diekkrüger, Impacts of global change on the hydrological cycle in West and Northwest Africa. 2010: Springer Science & Business Media.
[45] Bossa, A. Y., B. Diekkrüger, and E. K. Agbossou, Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water, 2014. 6(10): p. 3152-3181.
[46] Bossa, A. and B. Diekkrüger, Estimating scale effects of catchment properties on modeling soil and water degradation in Benin (West Africa). 2012.
[47] Le Barbé, L., G. Alé, B. Millet, H. Texier, Y. Borel, and R. Gualde, Les ressources en eaux superficielles de la République du Bénin. 1993.
[48] Christoph M., Fink A. H., Paeth H., Born K., Kerschgens M., Piecha K., and;, Climate scenarios ;. Impacts of global change on the hydrological cycle in West and Northwest Africa, 2010: p. pp. 402-425.
[49] Faure, P. and B. Volkoff, Some factors affecting regional differentiation of the soils in the Republic of Benin (West Africa). Catena, 1998. 32(3): p. 281-306.
[50] Junge, B., Die Böden des oberen Ouémé-Einzugsgebietes in Benin/Westafrika. 2004, Universitäts-und Landesbibliothek Bonn.
[51] Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, Soil and water assessment tool theoretical documentation version 2009. 2011, Texas Water Resources Institute.
[52] Te Chow, V., Applied hydrology. 1988: Tata McGraw-Hill Education.
[53] Arnold, J. and P. Allen, Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology, 1996. 176(1-4): p. 57-77.
[54] Monteith, J. L. Evaporation and environment. in Symp. Soc. Exp. Biol. 1965.
[55] Priestley, C. and R. Taylor, On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 1972. 100(2): p. 81-92.
[56] Hargreaves, G. H. and Z. A. Samani, Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1985. 1(2): p. 96-99.
[57] Williams, J. and H. Berndt, Sediment yield prediction based on watershed hydrology. Transactions of the ASAE, 1977. 20(6): p. 1100-1104.
[58] Nash, J. E. and J. V. Sutcliffe, River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 1970. 10(3): p. 282-290.
[59] Her, Y., J. Frankenberger, I. Chaubey, and R. Srinivasan, Threshold effects in HRU definition ofthe soil and water assessment tool. Transactions of the ASABE, 2015. 58(2): p. 367-378.
[60] Abbaspour, K., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Kløve, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 2015. 524: p. 733-752.
[61] Abbaspour, K. C., SWAT-CUP4: SWAT calibration and uncertainty programs–a user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag, 2011.
[62] Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan, Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 2007. 333(2): p. 413-430.
[63] Abbaspour, K., C. Johnson, and M. T. Van Genuchten, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 2004. 3(4): p. 1340-1352.
[64] Rouholahnejad, E., K. C. Abbaspour, M. Vejdani, R. Srinivasan, R. Schulin, and A. Lehmann, A parallelization framework for calibration of hydrological models. Environmental Modelling & Software, 2012. 31: p. 28-36.
[65] Abbaspour, K. C., SWAT-CUP 2012. SWAT Calibration and Uncertainty Program—A User Manual, 2013.
[66] Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007. 50(3): p. 885-900.
[67] Refsgaard, J. C., Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 1997. 198(1): p. 69-97.
[68] Gan, T. Y., E. M. Dlamini, and G. F. Biftu, Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 1997. 192(1-4): p. 81-103.
[69] ASCE, Criteria for evaluation of watershed models.. J. Irrig. Drainage Eng.. 1993. 119(3): p. 429-442.
[70] Legates, D. R. and G. J. McCabe, Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 1999. 35(1): p. 233-241.
[71] Boyle, D. P., H. V. Gupta, and S. Sorooshian, Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 2000. 36(12): p. 3663-3674.
[72] Gaborit, E., G. Pelletier, P. Vanrolleghem, and F. Anctil, Simulation du débit de la rivière Saint-Charles, première source d’eau potable de la ville de Québec. Canadian Journal of Civil Engineering, 2010. 37(2): p. 311-321.
[73] Duku, C., H. Rathjens, S. Zwart, and L. Hein, Towards ecosystem accounting. Hydrology and Earth System Sciences, 2015. 19(10): p. 4377-4396.
[74] Hounkpè J., Assessing the climate and land use changes impact on flood hazard in Ouémé River basin, BENIN (WEST AFRICA). 2016, University of Bonn, Germany.
[75] Sintondji L. O. and Dossou-Yovo E. R., Modelling the hydrological balance of the Okpara catchment at the Kaboua outlet in Benin. Int. J. of AgriScience, 2013. 3(3): p. 182-197.
[76] Chaibou Begou, J., S. Jomaa, S. Benabdallah, P. Bazie, A. Afouda, and M. Rode, Multi-site validation of the swat model on the bani catchment: Model performance and predictive uncertainty. Water, 2016. 8(5): p. 178.
[77] Gupta, H. V., K. J. Beven, and T. Wagener, Model calibration and uncertainty estimation. Encyclopedia of hydrological sciences, 2005.
[78] Cao, W., W. B. Bowden, T. Davie, and A. Fenemor, Multi‐variable and multi‐site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrological Processes, 2006. 20(5): p. 1057-1073.
[79] Wellen, C., A.-R. Kamran-Disfani, and G. B. Arhonditsis, Evaluation of the current state of distributed watershed nutrient water quality modeling. Environmental science & technology, 2015. 49(6): p. 3278-3290.
Cite This Article
  • APA Style

    Berenger Arcadius Sêgnonnan Dègan, Eric Adéchina Alamou, Yèkambèssoun N’Tcha M’Po, Abel Afouda. (2018). Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation. Hydrology, 6(2), 61-77. https://doi.org/10.11648/j.hyd.20180602.13

    Copy | Download

    ACS Style

    Berenger Arcadius Sêgnonnan Dègan; Eric Adéchina Alamou; Yèkambèssoun N’Tcha M’Po; Abel Afouda. Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation. Hydrology. 2018, 6(2), 61-77. doi: 10.11648/j.hyd.20180602.13

    Copy | Download

    AMA Style

    Berenger Arcadius Sêgnonnan Dègan, Eric Adéchina Alamou, Yèkambèssoun N’Tcha M’Po, Abel Afouda. Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation. Hydrology. 2018;6(2):61-77. doi: 10.11648/j.hyd.20180602.13

    Copy | Download

  • @article{10.11648/j.hyd.20180602.13,
      author = {Berenger Arcadius Sêgnonnan Dègan and Eric Adéchina Alamou and Yèkambèssoun N’Tcha M’Po and Abel Afouda},
      title = {Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation},
      journal = {Hydrology},
      volume = {6},
      number = {2},
      pages = {61-77},
      doi = {10.11648/j.hyd.20180602.13},
      url = {https://doi.org/10.11648/j.hyd.20180602.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.hyd.20180602.13},
      abstract = {In a soudano-guinean climate context, the Ouémé River Basin is simulated using the semi-distributed hydrological model SWAT to understand the rainfall-runoff process on this basin and also to assess this model performance on West Africa large areas basins at daily and monthly time steps. The inputs data consist of climatic data and rain gauge discharge records. The inputs records are long-term times series for the period 1979-2010, while the considered land use is just for the year 2003. After calibration and validation of the model, spatial calibration is also performed to appreciate this other feature of the model. It gives such acceptable and disputable results. Six (06) hypotheses have been emitted to analyze this performance loss. It comes out that hypothesis H5 results perform better both in calibration and validation. This hypothesis used data for the period 1993-2010 with 1993-2004 for calibration and 2005-2010 for validation; and considered the missing data in discharge records without any completion. Considering the internal rain gauge outlet performance for this hypothesis, the best is retained and the corresponded project is realized for each individual subbasin to see how best the model could simulate discharge for the Bétérou, Kaboua and Atchérigbé individual subbasins. Hypothesis H1; an assumption which considers missing discharge with data time period of 1982-2010 with 1982-1996 for calibration and 1997-2010 for validation; is the best for Bétérou and Kaboua, whereas H5 is better for Atchérigbé subbasin. Uncertainty analysis and Global Sensitivity Analysis were performed to appreciate what are this process occurring in the basin and how these results could be validated. A last comparison effort is performed with 10km rainfall grid for climatic rainfall data at the global catchment outlet; this approach does not improve results, while at internal outlet some improvements are observed.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Ouémé River Catchment SWAT Model at Bonou Outlet: Model Performance, Predictive Uncertainty and Multi-Site Validation
    AU  - Berenger Arcadius Sêgnonnan Dègan
    AU  - Eric Adéchina Alamou
    AU  - Yèkambèssoun N’Tcha M’Po
    AU  - Abel Afouda
    Y1  - 2018/09/05
    PY  - 2018
    N1  - https://doi.org/10.11648/j.hyd.20180602.13
    DO  - 10.11648/j.hyd.20180602.13
    T2  - Hydrology
    JF  - Hydrology
    JO  - Hydrology
    SP  - 61
    EP  - 77
    PB  - Science Publishing Group
    SN  - 2330-7617
    UR  - https://doi.org/10.11648/j.hyd.20180602.13
    AB  - In a soudano-guinean climate context, the Ouémé River Basin is simulated using the semi-distributed hydrological model SWAT to understand the rainfall-runoff process on this basin and also to assess this model performance on West Africa large areas basins at daily and monthly time steps. The inputs data consist of climatic data and rain gauge discharge records. The inputs records are long-term times series for the period 1979-2010, while the considered land use is just for the year 2003. After calibration and validation of the model, spatial calibration is also performed to appreciate this other feature of the model. It gives such acceptable and disputable results. Six (06) hypotheses have been emitted to analyze this performance loss. It comes out that hypothesis H5 results perform better both in calibration and validation. This hypothesis used data for the period 1993-2010 with 1993-2004 for calibration and 2005-2010 for validation; and considered the missing data in discharge records without any completion. Considering the internal rain gauge outlet performance for this hypothesis, the best is retained and the corresponded project is realized for each individual subbasin to see how best the model could simulate discharge for the Bétérou, Kaboua and Atchérigbé individual subbasins. Hypothesis H1; an assumption which considers missing discharge with data time period of 1982-2010 with 1982-1996 for calibration and 1997-2010 for validation; is the best for Bétérou and Kaboua, whereas H5 is better for Atchérigbé subbasin. Uncertainty analysis and Global Sensitivity Analysis were performed to appreciate what are this process occurring in the basin and how these results could be validated. A last comparison effort is performed with 10km rainfall grid for climatic rainfall data at the global catchment outlet; this approach does not improve results, while at internal outlet some improvements are observed.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Applied Hydrology, Water National Institute, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Department of Civil Engineering, School of Roads and Buildings, University of Science Technology Engineering and Mathematics, Abomey, Benin

  • Department of Applied Hydrology, Water National Institute, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Department of Sciences and Technics, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Sections