Development of the Stage Flow Relations for a Tropical Watershed
Shahram Khosrowpanah,
Mark Alan Lander,
Ujwalkumar Dashrath Patil
Issue:
Volume 7, Issue 3, September 2019
Pages:
38-45
Received:
16 August 2019
Accepted:
4 September 2019
Published:
19 September 2019
Abstract: The effluent discharge from wastewater treatment plants can permeate through the ground and become a major source of contaminant to ecosystems and water bodies. These toxic contaminants can transport and find a way to the ocean via underground streams harming the aquatic life and promoting algal blooms. This paper presents meteorological and hydrological data collection and analysis to better understand the characteristics of the effluent discharge from the wastewater treatment plant and receiving water in Toguan watershed on the Island of Guam so as to support future regulatory discussions regarding modification of permit conditions and/or water quality standards to achieve compliance. Hydrological data such as rainfall, turbidity and stream level were collected over a period of two years. Crossflow measurements for two stations, one downstream, the other upstream of the effluent discharge point were collected bi-weekly, except at times of very low flow or dangerously high storm runoff in the stream. To better understand the behavior of the Toguan River sub-watersheds, aerial photos were taken from a single-engine Cessna aircraft. By analyzing the collected hydrological data, the relationships among the stream level, volume discharge and rainfall, were developed. The manually collected crossflow data allowed for the calculation of a rating curve for the Toguan River. This effort was somewhat hampered by prolonged drought conditions during roughly half of the period of data collection that severely limited the amount of crossflow measurements taken at high stage heights. The continuous measurement of stream level and rainfall allowed for a more comprehensive analysis of the relationship between the stage height and rainfall. Finally, a complimentary stream stage height short-term prediction scheme was developed using a routing model, and refinements to the stream flow discharge curve using a simple model for open channel flow is also presented. A further benefit of the study was the establishment of a baseline for the hydrologic conditions of the Toguan watershed which can be used to assess changes related to any future improvements to the wastewater treatment plant operations or other significant developments within this watershed.
Abstract: The effluent discharge from wastewater treatment plants can permeate through the ground and become a major source of contaminant to ecosystems and water bodies. These toxic contaminants can transport and find a way to the ocean via underground streams harming the aquatic life and promoting algal blooms. This paper presents meteorological and hydrol...
Show More
Estimation of Surface Water Vapour Density and Its Variation with Other Meteorological Parameters Over Owerri, South Eastern, Nigeria
Davidson Odafe Akpootu,
Wahidat Mustapha,
Ashiru Muhammad Rabiu,
MukhtarIsah Iliyasu,
Mohammed Bello Abubakar,
Mukhtar Isah Iliyasu,
Simeon Imaben Salifu
Issue:
Volume 7, Issue 3, September 2019
Pages:
46-55
Received:
26 August 2019
Accepted:
18 September 2019
Published:
9 October 2019
Abstract: In this paper, the monthly variation of Surface Water Vapour Density (SWVD) with meteorological parameters of monthly average daily mean temperature, relative humidity, surface pressure, cloud cover and sunshine hours during the period of sixteen years (2000 – 2015) for Owerri (Latitude 5.48°N, Longitude 7.00°E, and 91m above sea level) were investigated. The daily variation of surface water vapour density for the two distinct seasons considering two typical months in each during the period of year 2015 was examined. The results showed fluctuation in the amount of surface water vapour density in each day of the month for the period under investigation. The monthly average daily values indicated that the surface water vapour densities are greater during the raining season than in the dry season. It was observed that the maximum average value of surface water vapour density of 21.002gm-3 occurred in the month of June during the raining season and minimum value of 14.653gm-3 in the month of January during the dry season. The highest value of surface water vapour density was observed on 9th May, 2015 and the lowest on 14th January, 2015. The comparison assessment of the developed SWVD based models was carried out using statistical indices of coefficient of determination (R2), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash – Sutcliffe Equation (NSE) and Index of Agreement (IA). The developed multivariate correlation regression model that relates temperature and relative humidity with R2=99.9% MBE=0.1259 RMSE=0.1462 MPE=-0.6739 NSE=99.8402% and IA=99.9611% was found more suitable for surface water vapour density estimation with good fitting and therefore can be used for estimating surface water vapour density in the location under investigation and region with similar climatic information. The results of the descriptive statistical analysis revealed that the surface water vapour density, mean temperature, relative humidity, cloud cover and sunshine hours data spread out more to the left of their mean value (negatively skewed), while the surface pressure data spread out more to the right of their mean value (positively skewed). The surface water vapour density data have positive kurtosis which indicates a relatively peaked distribution and possibility of a leptokurtic distribution while the mean temperature, relative humidity, surface pressure, cloud cover and sunshine hours data have negative kurtosis which indicates a relatively flat distribution and possibility of platykurtic distribution.
Abstract: In this paper, the monthly variation of Surface Water Vapour Density (SWVD) with meteorological parameters of monthly average daily mean temperature, relative humidity, surface pressure, cloud cover and sunshine hours during the period of sixteen years (2000 – 2015) for Owerri (Latitude 5.48°N, Longitude 7.00°E, and 91m above sea level) were invest...
Show More