Implications of Groundwater Depletion for Aquifer Geomatrix Deformation and Water Availability
Juana P. Moiwo,
Yahaya K. Kawa,
John P. Kaisam,
Umu Lamboi
Issue:
Volume 4, Issue 5, September 2016
Pages:
46-57
Received:
2 September 2016
Accepted:
14 October 2016
Published:
12 December 2016
Abstract: Worsening water storage depletion contributes to environmental degradation, land subsidence and earthquake or even disrupts food production/security and social stability. There is also the need for efficient water use strategies in populated regions, especially when such regions also have intensive agricultural and industrial activities. The North China Plain (NCP) is one such region which is not only the seat of power, but also a major agricultural and industrial with a severe water storage depletion. Thus this study integrates satellite, model and field data products to investigate water storage depletion and land subsidence in the Beijing Environs of NCP. In the first step, GRACE (Gravity Recovery and Climate Experiment) mass rates are analyzed for water storage depletion in the region. Next, GRACE total water storage (TWS) is corrected for soil moisture storage (SMS) to derive groundwater storage (GWS) using GLDAS (Global Land Data Assimilation System) data products. The derived GWS is compared with GWS obtained from field-measured groundwater level to show water storage depletion in the study area. Then GPS (Global Positioning System) data of relative land surface change are used to show land subsidence due to water storage depletion. A total of ~96 near-consecutive months (Jan. 2002 through Dec. 2009) of datasets are used in the study. Based on GRACE mass rates, TWS depletion is 36.54±1.74 mm yr-1 or 6.34±0.29 km3 yr-1 for the 169 000 km2 study area. Analysis of relative land surface change shows the occurrence of land subsidence at 7.29±0.35 mm yr-1 in the Beijing Environ of NCP. About 7.50% (2.74±0.18 mm yr-1 or 0.46±0.03 km3 yr-1) of the depletion in TWS and 5.25% (1.52±0.07 mm yr-1 or 0.26±0.01 km3 yr-1) of that in GWS are attributed to storage reductions due to the land subsidence. Storage loss in the region justifies the current south-north water transfer efforts in the region. The concurrence of water storage depletion and land subsidence could have adverse implications for the hydrology, ecology, food security and social stability of the region. It is important to devise efficient measures to avert the negative effects of water storage depletion in the study area.
Abstract: Worsening water storage depletion contributes to environmental degradation, land subsidence and earthquake or even disrupts food production/security and social stability. There is also the need for efficient water use strategies in populated regions, especially when such regions also have intensive agricultural and industrial activities. The North ...
Show More